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APPLICATION OF THE METHOD OF INTEGRAL RELATIONS TO 

SWERSONIC NONEQUILIBRIUM FLOW 

PAST WEEES AND CONES 

By Je r ry  C . South, Jr. 
Langley  Research  Center 

SUMMARY 

The method of i n t eg ra l   r e l a t ions  i s  used to  calculate  supersonic  nonequi- 
l ibrium  flow  past  wedges and c i r cu la r  cones a t  zero  incidence.  Vibrational 
relaxation  in  a  pure  diatomic  gas i s  considered so tha t   t he   r e su l t s  can  be com- 
pared  with  existing  calculations  using  the method  of charac te r i s t ics .  The 
approach  taken i s  similar  to  that   followed  previously  in  ideal-gas  problems, 
except   that   the   isentropic  law  cannot  be  used  and the   v ibra t iona l   ra te   equa t ion  
i s  included. The governing  equations  are  converted  to  approximate  systems  of 
ordinary  different ia l   equat ions which a re   so lved   as   in i t ia l -va lue  problems on a 
high-speed d i g i t a l  computer. Alternate  procedures  are  discussed which point 
out   cer ta in   features  of  general  importance. 

Numerical r e s u l t s   a r e   p r e s e n t e d   t o   i l l u s t r a t e   t h e  convergence  and  accuracy 
of the method in   p red ic t ing   t he   d i s t r ibu t ions  of  flow  variables  during  the 
approach to   equi l ibr ium. The calculations  are  performed  through  the  third 
approximation  for  the wedge and  through  the  second  approximation  for  the  cone. 

INTRODUCTION 

The method of i n t eg ra l   r e l a t ions  (ref. 1) i s  a  numerical  analysis  technique 
for  solving  the  nonlinear  equations of gas dynamics. Specifically  designed  for 
high-speed  computing, the  method has  been shown t o  be   usefu l   and   versa t i le   in   a  
va r i e ty  of  problems. Most appl icat ions have  been i n  mixed flows,  such as the  
sonic   f low  past   e l l ipses  and e l l i p s o i d s   ( r e f .  2) and the  supersonic  blunt-body 
problem ( r e f s .  3 t o  9 ) .  Other  important  applications have  been made to   con ica l  
flows  without  axial symmetry ( r e f .  10) and to   the   v i scous  boundary layer  
( r e f .  11). 

In  the  aforementioned works the  gas was considered  to  be ideal;   thus,   an 
obvious  step would seem t o  be the  extension of t h i s  method to   inc lude   rea l -gas  
effects  in  hypersonic  flow  problems.  There do not  appear t o  be  any obstacles 
t o  such  an  extension  in  the  case of equilibrium thermodynamics. The entropy i s  
s t i l l  conserved  along  the  streamlines  and,  therefore,  the stream function  can 
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be  used  advantageously (refs. 3 and 6 ) .  Usually  the  variations  of  equilibrium 
flow  properties  across  the shock layer  are no-more  nonlinear  than  are  those i n  
ideal-gas  cases.  In  nonequilibrium  flows, however, there   a re  some d i f f i c u l t i e s :  
t he   i s en t rop ic  l a w  i s  not   va l id  and  cannot  be  used;  chemical  and  vibrational 
rate equations must be  included;  and  shock-layer  profiles  can be highly non- 
l i nea r .   Th i s   l a s t   d i f f i cu l ty  i s  par t icular ly   important   to  a basic   feature  of 
t h e  method: t he  assumption  of  interpolation  polynomials  for  certain  groupings 
of the  f low  variables.  The nonl inear   prof i les  may be  poorly  approximated by 
low-degree  polynomials  and  might  considerably  retard  the  convergence  of  the 
method. On the   o ther  hand, t he   i n t eg ra l   r e l a t ions   e f f ec t  a "smoothing"  of pro- 
f i l e  i r r e g u l a r i t i e s   ( r e f .  11); thus it seems poss ib le   tha t  some s igni f icant  
r e su l t s  might  be  obtained i n  low-degree  approximations. 

Two appl icat ions  of   the   integral   re la t ions  to   nonequi l ibr ium  f low  calcula-  
t i ons  have recently  appeared.  Shih e t  al. ( r e f .  12) used  the f irst  approxima- 
t ion  to   calculate   hypersonic   f low of a five-component (N2,02,N,O, and NO) dis- 
sociat ing  gas   past  a sphere. Some of the  different  procedures  necessary  for 
nonequilibrium  calculations,  as compared with  previous  ideal-gas work (refs. 3 
t o  g ) ,  were emphasized, pa r t i cu la r ly   i n   r ega rd   t o   t he   s t a r t i ng   cond i t ions  a t  the  
ax is  of symmetry. 

South ( r e f .  13) appl ied  the  integral   re la t ions  to   supersonic ,   nonequi l ibr ium 
flow  past wedges and  cones, where the  molecular  vibrations  are  relaxing. As i n  
reference 12, only  the f irst  approximation was considered,  but  the  results  for 
shock-wave shape  and surface  pressure  dis t r ibut ion compared favorably  with  cal- 
culations  based on the  method of character is t ics   (suppl ied by R .  Sedney and 
N. Gerber  of  the  Ballistic  Research  Laboratories, Aberdeen Proving  Ground). In  
reference 13 the   vibrat ional   re laxat ion  t ime was assumed t o  be constant  through- 
out  the wedge or cone shock l aye r   t o   e l imina te  dependence on experimental   results 
for the   re laxat ion time. The computational program w a s  l a t e r  modified to account 
f o r  a pressure- and  temperature-dependent  relaxation  time, and the   f i r s t   approxi -  
mation r e s u l t s  were  found t o  be adversely  affected.  Similar  unpublished  calcu- 
l a t ions  made a t  the Langley  Research  Center  using  the  Lighthill-Freeman  dissoci- 
a t ing  gas  model showed tha t   t he  f irst  approximation was inadequate. It appears 
t h a t   i n  many problems  approximations  higher  than  the f irst  may be  needed. 

In  the  present  paper,   the work of  reference 13 is extended t o  higher  approx- 
imations i n  a straightforward manner. The prime objective i s  t o  observe  the 
resul t ing  gains   in   overal l   accuracy,   with emphasis on certain  important  features 
of the  method o f   i n t eg ra l   r e l a t ions   t ha t  have not  been  evident  previously. 

SYMBOLS 

cP frozen-flow  specific  heat a t  constant  pressure 

E vibrational  energy 

Eeq equilibrium  vibrational  energy 
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nonhomogeneous functions  in  equations (1) t o  (4), used i n  equations (14) 
t o  (19) 

funct ions  different ia ted with r e s p e c t   t o  y i n  equations (1) t o  (4), 
used i n  equations (14) t o  (19) 

0 o r  1 f o r  a wedge o r  a cone, respect ively 

frozen-flow Mach number, - V 

m 
order  of  approximation (number o f   s t r i p s )  

pressure 

funct ions  different ia ted with respect t o  x i n  equations (1) t o  (4), 
used i n  equations (14)  t o  (19) 

gas  constant 

radial   coordinate normal t o  cone axis 

temperature 

veloci ty  component i n  x- and  y-direction,  respectively 

t o t a l   v e l o c i t y ,  

coordinate  along  and  normal t o  body surface,   respectively 

integrat ion  s tep  s ize  

shock-wave angle 

r a t i o  of frozen-flow  specific  heats 

shock-layer  thickness in   y -d i rec t ion  

v ibra t iona l   d r iv ing   force ,  Eeq - E 
r 

character is t ic   vibrat ional   temperature  

wedge o r  cone half-angle 

shock-layer  included  angle, p - e 

density 
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T vibra t iona l   re laxa t ion  time 

$ stream function 

Subscripts: 

m free-stream  quantity 

i 1,2,3,4 (refers to   con t inu i ty ,  x-momentum,  y-momentum, and r a t e  equa- 
t ions,   respect ively)  

0 surface  quantity;  see def ini t ion  of   subscr ipt  k 

k 0,1,. . . ,N-1 ,6  (denotes a p a r t i c u l a r   s t r i p  boundary as l a b e l e d   i n  
f i g .  2) 

6 shock-wave quant i ty;   see   def ini t ion of subscript  k 

Primed quant i t ies  are dimensional;  unprimed  quantities are dimensionless, 
as shown after equation ( 6 ) .  

Barred  quantit ies are corrected  surface  f low  variables.  

PROBLEM  DESCRIPTION 

The physical problem t o  be studied i s  t h e  steady supersonic  flow  of a pure 
diatomic  gas  past symmetric wedges and r ight   c i rcular   cones.  The flow i s  
inv isc id  and the  only  diss ipat ive mechanism i s  the  relaxation  process of t he  
molecular  vibrations.  This i s  then  the same problem s tudied   in   re fe rences  1 4  
and 15 by using the method of  characterist ics.   There  are  several   reasons why 
t h i s  model i s  well suited  to  the  objectives  of  the  present  study. The governing 
equat ions  are   re la t ively  s imple  in  form, yet   the   physical  problem i s  highly non- 
l i n e a r  and exhibi ts  many of the  important  features of more complex nonequilibrium 
flows. The added d i f f i c u l t i e s  which arise i n   t h e  blunt-body  problem ( r e f s .  3 t o  
9 and 12), such a s  unknown i n i t i a l   c o n d i t i o n s  and multiple  singular  points,   are 
not  encountered  here.  This i s  a great  advantage i n  numerical  calculations, 
particularly  in  higher  approximations.   Finally,  it seems worthwhile t o  point 
out that radiat ion  heat ing problems ( r e f s .  16 and 17) have  caused a renewed 
interest   in  pointed  configurations,   such as the  wedge or the cone, f o r   t h e  
design of hypersonic  vehicles. 

Basic  Equations 

The flow  geometry  and  coordinate  system are i l l u s t r a t e d   i n   f i g u r e  1 f o r  a 
cone. A body-oriented  coordinate  system,  with x and y the  coordinates  along 
and  normal t o  t h e  body surface,  i s  used s o  t h a t   t h e  X-axis i s  i n c l i n e d   t o   t h e  
stream  direction by the  angle 8 and  coincides  with the wedge or cone surface.  
The  wedge or cone t i p  l i es  a t  the  point  ( 0 , O ) .  The basic  equations are a s  
fol lows  ( ref .  13) : 
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Continuity : 

x-momentum: 

Vibrat ional   ra te :  

Energy: 

L(puErj) ax + $(pvErj) - pcr j  = 0 

S ta t e  : 

7 k 2 P  = PT ( 6 )  

where j = 0 or 1 f o r  a wedge o r  cone, 
respectively,  and r = x s i n  8 + y cos 0 .  
The var iables  and coordinates  have been 
nondimensionalized  as  follows: 

u,v = u'  ,v' 

VW 
1 P =  p' p = -  P 1  

P,'VW Po3 
' 2  

T = -  T' E =  E' x'  ,y' 
' I  X,Y = 

Tml cp T, L' 

The primes  denote  dimensional 
quant i t ies .  The length  scale L' i s  
t a k e n   t o  be Vm'~'(O,O), where T'(O,O) 

i s  the   v ibra t iona l   re laxa t ion  time on 
the  surface a t  t h e  wedge or cone t i p .  
It i s  assumed, as i n  references 14  
and 15, t h a t  

P 'T '  a exp(C'/T') 1/3 ( 7 )  
Figure 1.- Flow geometry and coordinate 

system fo r  a cone. 
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where the  constant C '  i s  determined from experimental  data. The v ibra t iona l  
"driving  force" E appearing  in  equation ( 4 )  i s  (as i n  refs. 1 4  and 13) 

Eeq - E 
E =  

7 

where T = T'/T'(O,O) and Eeq i s  t h e   v i b r a t i o n a l   e n e r a   t h a t   t h e   f l o w  would 
have l o c a l l y   i f  it were i n  equilibrium a t  temperature T and i s  t aken   t o  be 

The f ac to r  2 /7  i s  t h e   r a t i o  R'/cpf f o r  an ideal  diatomic  gas (7 = 7 / 5 ) .  

Boundary Conditions 

It i s  assumed that   the   molecular   vibrat ions are frozen  across  the shock 
wave and  that  E, = 0; then, a t  t h e  shock  curve,  or y = 6 ( x ) ,  

The ideal-gas shock-wave relations  apply  and  the  other  variables can  be deter-  
mined as algebraic  functions  of &, 8 ,  and  the shock-wave angle p(x) .  The 
necessary   re la t ions   a re   l i s ted   in   appendix  A .  

The locat ion of t he  shock  curve i s  determined by 

" d6 - t an  A 
dx 

where h = p - 8 ,  and  the  shock wave i s  attached a t  t he  body t i p  so  t h a t  

6 

6 ( 0 )  = 0 

The  wedge or cone surface i s  a streamline;  thus 
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APPROXIMATE SYSTEMS 

The method of   integral   re la t ions  provides  a logical  procedure  for con- 

6 equations, which are readi ly   adaptab le   to  
verting  equations (1) t o  ( 4 )  t o  approximate  systems  of  ordinary  differential 

N-1 e lec t ron ic   d ig i t a l  computing. The conversion 
procedure for the  present problem i s  the  same 
as that  used  in  previous  ideal-gas,  mixed-flow 
s tudies   ( re fs .  1 and 3) .  The f irst  approxi- 
mation was de r ived   i n   de t a i l   i n   r e f e rence  13, 

Shock wave-. . 1 and  higher  approximations  used  herein are ’ 0 straightforward  extensions of that  work. 

/ / /  
Equations (1) t o  ( 4 )  a r e   i n   t he   d ive r -  

gence form - t h a t  i s ,  
/ / /  

where the  appropriate  functions Q i ,  G i ,  and 
F i  can  be  seen by inspection of equations (1) 
t o  ( 4 ) .  In   t he  Nth approximation  the  region 
of  flow  between the  shock wave and body sur- 
face i s  divided  into N equal   s t r ips ,  
arranged as i n   f i g u r e  2. Each of equa- 
t i ons  (14) i s  integrated from the  surface 
( y  = 0 )  t o   t h e  boundary of each s t r i p .  The 
r e s u l t  i s  (for  the  present  problem) 4N i n t e -  
gral   re la t ions,   as   fol lows:  

Figure 2. - Nth-strip arrangement. 

TO evaluate  the unknown in tegra ls ,  Nth-degree interpolation  polynomials  in y 
are assumed for the  functions Q i  and Fi; f o r  example, 

where the   coef f ic ien ts   q i  depend l i n e a r l y  on the  x-dependent  functions  Qi,k. 
An approximate  system of IN ordinary  different ia l   equat ions i s  f inal ly   obtained,  
where x i s  the  independent  variable. 

7 
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Corresponding t o   t h e   g e n e r a l  form indicated by equations (14) ,  t he  first 
three  approximations (N = l ,2 ,3)  can be   wr i t ten   as  follows: 

N = 1: (i = 1,2,3,4) 

(17) 

N = 2: (i = 1,2,3,4) 
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The second subsc r ip t   r e f e r s   t o  a p a r t i c u l a r   s t r i p  boundary, as indicated i n  
f igure  2. Since  the shock-wave functions Q i  ,6 are functions  of p , (and  r6 
when j = l), equations (17) t o  (19) were manipulated so  tha t   der iva t ives  of 
Qi,6  and  only one other  function,  Qi,k  (k = O,l,. . . , N - l ) ,  appear i n  each 
equation.  This form i s  algebraically  convenient  because dp/dx  can  be  obtained 
easily from the  single  equation  containing dQ3,0/dx and dQ3,6/dx (e. g., 

eq. (l7), (18a), o r  (19.)) by not ing  that  Q3,o = p o ~ v o  = 0 f o r  a l l  values 

of x. The algebra  required  to  obtain  the  remaining  derivatives  of Uk,  Vk, 
e t c . ,  i s  considerably  simplified.   Further  details  are given i n  appendix B, 
where the  final  computational  equations are derived  for  the  second  approximation, 
N = 2. 

It should  be  noted  that  in  the  approximate  systems  the  functions  Qi,k 
contain  the  factor   rkj .  I f  the  der ivat ives  of rkj a re  expanded  and the  equa- 
t ions  are   then  divided by roj, the   resu l t ing   d i f fe ren t ia l   equa t ions   for   the  

cone are  very similar to   t hose   fo r   t he  wedge, with some added  terms ( f o r  example, 
see r e f .  13 f o r  N = 1 and  appendix B fo r  N = 2 ) .  

Tip  Solution 

The condi t ion  that   the  shock wave i s  attached, or 6 ( 0 )  = 0, causes  the 
coeff ic ients  of t he   de r iva t ives   t o   van i sh   a t   t he   t i p  of the  wedge or cone. If 
a regular   solut ion  exis ts ,  it i s  necessary  that  the  remaining  terms  also  vanish 
a t  x = 0. This condition  yields 4N algebraic  equations  in  the 5 N  unknowns: 

EO,.  . . , E N - l  (u6,  v6, e tc . ,   a re   cons idered   to  be f’unctions  of p through 

the  shock-wave relat ions,   wi th  Moo and 8 specified).  Eliminating Tk between 
equations (5)  and ( 6 )  on each s t r i p  boundary  gives N additional  equations;  this 
s tep  completes   the  ini t ia l   solut ion.  

P ;  % > *  - - 9  UN-1; v1, . .  * 9 v N - l ;  PO, . > Q-1; PO’ * . * > PN-1; and 

The N algebraic  equations which correspond to   t he   r a t e   equa t ion  ( i  = 4) 
together  with  equation (10) y i e ld  Ek = 0; t h a t  i s ,  the  flow i s  frozen  through- 
out   the shock layer  a t  the  wedge o r  cone t i p .  The remaining  equations  yield  the 
exact  solution  for  frozen  flow  over a wedge when j = 0; t h a t  i s ,  Uk = u6, 
Vk = v6 = 0, pk = p6, e t c .  When j = 1, an  approximate  solution  for  frozen 

flow  past a cone i s  obtained,  and this solut ion i s  espec ia l ly   in te res t ing .  

I n  t h e   c l a s s i c a l  problem of supersonic  frozen  or  equilibrium  flow  past  an 
axisymmetric  cone, s imilar i ty   considerat ions show t h a t   t h e  shock wave is  s t r a igh t  
and that   f low  propert ies   are   constant   a long  rays  emanating from t h e   t i p .  Appli- 
cat ion of the  same considerations t o   t h e  approximate  systems for   the   cont inui ty  
and momentum equations i s  straightforward,  since a l l  s t r ip   boundaries  are 
straight rays when t h e  shock i s  straight. Discarding  the  x-derivatives  of  the 
flow  variables  along  the  str ip  boundaries  yields  the same so lu t ion   for  a l l  
values  of x as the  l i m i t  so lu t ion   (x  4 0 )  mentioned  previously.  This 
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par t icu lar   appl ica t ion   of   the   in tegra l   re la t ions  was also  pointed  out  by  Chushkin 
and  Shchennikov (ref.  10). It i s  worth  noting that  where the   exac t   c lass ica l  
so lu t ions   resu l t  from a boundary-value  problem for  nonlinear  ordinary  differen- 
t i a l  equations, the integral   re la t ions  yield  nonl inear   a lgebraic   equat ions which 
are  solved by tr ial  and er ror .  Some r e s u l t s  of these  solut ions  are  shown i n  
figure 3 ,  wherein  the f irst  ( N  = 1) and  second ( N  = 2)  approximations  for  frozen 
flow  over a cone a re  compared with  the  exact  solution 
it was shown that  the  f irst  approximation  agrees  well 
( ref .  20) for   ful l   equi l ibr ium  air f low  over  a cone. 

,Mm = 1.05 
80 

( r e f .  18). In  reference 19 
with the  exact  solution 

Figure 3.- Shock-wave angle as a function of cone half-angle for frozen flow. 

For the  present problem i n  which t h e   e n t i r e  shock layer  i s  supersonic 
t h e   i n i t i a l   v a l u e s  of t he  flow variables  are completely  determined by the  approx- 
imate  systems  and  the shock-wave re la t ions .   S ince   the   o r ig ina l   par t ia l   d i f fe r -  
ent ia l   equat ions are of  hyperbolic  type (ref.  22), the   in tegra l   re la t ions   p rop-  
e r l y  form an in i t i a l -va lue  problem. ( In   t he  blunt-body  problem,  with  subsonic 
flow i n  the  nose  region  and  supersonic  flow on the   a f te rbody,   the   par t ia l   d i f fe r -  
ent ia l   equat ions  are  of mixed ( e l l i p t i c  and  hyperbolic)  type; and the   i n t eg ra l  
re la t ions  thus form a boundary-value  problem (refs. 3 t o  8 ) . )  

l A t  a given  value  of M, > 1, the re   ex i s t s  a l imited  region of wedge o r  
cone angles which are   smaller   than  the detachment  angle,  yet  subsonic  flow 
occurs i n   t h e  shock l aye r   ( r e f .  21, p. 683). This   s i tuat ion i s  excluded i n   t h e  
present  formulation. 

10 



The i n i t i a l   d e r i v a t i v e s  a t  x = 0 can be evaluated by d i f fe ren t ia t ing   the  
approximate  systems once more and tak ing   the  l i m i t  ( x  + O ) .  The i n i t i a l   d e r i v -  
a t ives  so  obtained  for  the wedge a re   exac t   i n  a l l  approximations.  This  result 
i s  not  surprising,  since  the  frozen-flow  variables  at   the wedge t ip   a re   cons tan t  
i n   t h e   i n t e r v a l  0 5 y 5 6 (and 6 " $ 0 ) ;  thus,  the  interpolation  polynomials 
assumed f o r  pu, PUV, e t c . ,  are exact a t  x = 0 .  The  wedge i n i t i a l   d e r i v a t i v e s  
on any s t r i p  boundary are de r ived   i n  appendix C .  

The present method also  yields   l inear   a lgebraic   equat ions  for   the cone t i p  
der ivat ives .  The approximate  expressions  are more lengthy  than  those  for  the 
wedge and are not  given  herein;  they  are  given  in  reference 13 fo r  N = 1. The 
exact   solut ion  for   the cone t i p   d e r i v a t i v e s  can  be  obtained i n  a manner similar 
t o   t h a t   f o r   t h e  wedge (see  appendix C )  by solving a boundary-value  problem fo r  
l inear   ordinary  different ia l   equat ions.  The integrat ion must be  performed 
numerically, however, s ince  the  var iable   coeff ic ients  of t h e   d i f f e r e n t i a l  equa- 
t i ons  depend on the  nonlinear  conical-flow  solution. The present  approximate 
calculat ions  for   the cone t i p   d e r i v a t i v e s   f o r  N = 2 were found t o  be in   exce l -  
l e n t  agreement  with  exact  numerical  solutions  recently  obtained by R .  Sedney  and 
N .  Gerber  of  the  Ballistic  Research  Laboratories, Aberdeen Proving Ground. 

Nonconvergence of the  Rate  Equation 

A t  large  distances from t h e  wedge or cone t i p ,  it can  be in tu i t i ve ly   r ea -  
soned that  throughout most of the  shock  layer  the f l o w  variables  should  approach 
their   equilibrium  values - t h a t  is ,  those  values which a r i s e  from assuming  zero 
relaxat ion time behind  the  shock wave. For a f in i te   re laxa t ion   t ime,   there   a re  
three zones which appear i n   t h e  flow: (1) a relaxation zone just   behind  the 
shock wave, ( 2 )  an  equilibrium zone  between the  shock wave and  surface,  and 
(3) an  entropy  layer  adjacent  to  the  surface  (ref.  1 4 ) .  Far from t h e   t i p ,   t h e  
equilibrium zone (2 )  w i l l  occupy  most of the  shock layer  so t h a t  by comparison 
the  re la t ive  thicknesses  of  zones (1) and (3) appear t o  be negl igibly  thin.  
Zones (1) and ( 3 )  do not  actually  disappear,  however, and this   feature   causes  
d i f f i c u l t y   i n  any calculat ion scheme. For example, the  flow  variables a t  the  
surface,  excepting  the  pressure, do not  reach  the same equilibrium  values as i n  
zone ( e ) ,  and the  f low  variables a t  the  shock a re  always  frozen  even a t  x = m. 

The profiles  of  the  f low  variables  across  the shock layer  thus  approach jump 
discont inui t ies  a t  both  the shock wave and  surface  as x + m .  

I n  the  present  method, t h i s   d i f f i c u l t y  i s  evidenced i n  the  approximate 
systems f o r   t h e  rate equation (i = 4) .  me vibrat ional   dr iving  forces  Ek 
along  the s t r i p  boundaries  appear i n   t h e  F4,k terms of the  approximate sys- 
tems. Each of  those  driving  forces  should  tend  to  zero as x increases,  with 
the  exception of t he  shock-wave 
t h e  shock wave (eq. (10) ) gives 

dr iving  force 
f o r  a l l  values 

€6. The boundary condition a t  
of x 

€6 = E,q,6>O 
T 6  

11 



A closer  examination of the approximate  systems  reveals  that  the  coefficients 
of the  physical-variable  derivatives  contain  the  factor  6rkj which i s  of the  

order X1+j for   large  values  of x .   In  the approximate rate equations,   the 
6 ~ 4 , ~  terms = SrkjPkck) are a l s o  of the order xl+j. Then equating  the  coef- 

f i c i e n t s  of  xl+j ( t h a t  i s ,  comparing the  dominant  terms for large  values of x )  
leads to   the  fol lowing  conclusion:   the  physical   der ivat ives   a long  the  s t r ip  
boundaries  can  decay t o  zero as x increases  only i f  E k  ( k  # S )  approach 
un rea l i s t i c  nonzero  values t o  counter  the  always-positive  contribution  of E ~ .  
This   effect  i s  the  most severe   in  the surface  rate  equation  (e.g. ,   eq.  ( l 7 ) ,  
(18a), or (19.)) since,  as x -+ m, 

( 

or 

where the  plus  sign  corresponds  to N = 1 and 3 and the  minus sign  corresponds 
t o  N = 2. Equation  (22)  predicts  alternating  rrovershoots'f (+) and  "undershoots" 
( - )  of  about  equal  magnitude in   the  asymptot ic   value for Eo. The problem i s  
less  severe a t  the   in te r ior   s t r ip   boundar ies ,   s ince  the F4,k  terms (k # 0 , S )  

receive more weight  than  the  F4,6 terms. For example, in   equat ions ( l g b )  
and (lgc)  F4,1 and  F4,2 are  weighted  three times as much a s  F4,8. 

NUMERICAL RFSULTS 

Three different   numerical   cases   are   presented  to   i l lustrate   the  accuracy 
and  convergence of the  method. The conditions  for  each  case  herein  correspond 
exac t ly   to   the   condi t ions   for   the   ca lcu la ted  examples reported  in   references 1 4  
and 15. Thus, the   resu l t s   ob ta ined  by using  the method of i n t eg ra l   r e l a t ions  
can be d i r ec t ly  compared with  those  obtained by the method of   character is t ics .  
For a l l  cases the free-stream  temperature i s  300° K and the  gas i s  pure  nitrogen 
(h = 11.12). The constant C = C'/Tm' used in   the   express ion   for   the   v ibra-  
t ional   re laxat ion  t ime  (eq.  ( 7 ) )  was obtained from the  authors  of references 14  
and 15. The numerical  cases are as follows: 

Case I - Wedge: M, = 6, e = 40.02O, C = 0.4655 x 104 
Case I1 - Cone: = 12, 8 = 46.39O, C = 1.0137 x lo4 
Case 111 - Cone : & = 10, 8 = 33.820, C = 1.0137 x lo4 

12 



Hy-perbolic S tab i l i t y   Cr i t e r ion  

In  reference 13 only  the first approximation was considered,  and no numer- 
i c a l   s t a b i l i t y  problems were encountered i n  cases I and 11. In  case I11 the  
i n i t i a l  Mach number (based on the  frozen  speed  of  sound) on the  cone surface 
% was about 1.08, and a l l  a t t empt s   a t   i n t eg ra t ion  away from t h e   t i p   f a i l e d .  
It was be l ieved   tha t   the   ins tab i l i ty  was caused by t h e   f a c t   t h a t  % = 1 i s  a 
natural   s ingular   point  of t he  system. The higher  approximations were l a t e r  
discovered t o  be unstable  not  only  in  case I11 but   a lso  in   cases  I and I1 
(Mg = 1.4 and 1.7, respec t ive ly) .  The problem was f ina l ly   reso lved  by applying 
a hyperbol ic   s tab i l i ty   c r i te r ion ,  as follows:  Consider  the  two-strip ( N  = 2)  
calculat ion  for   f low  past  a wedge, s chemat i ca l ly   i l l u s t r a t ed   i n   f i gu re  4. Three 
data  points  along  the  surface normal a r e  
computed a t  each  integrat ion  s tep:   a t  
the  shock,  at   the middle l i n e ,  and on 
the  surface.  The left-running (C+) and 
the  r ight-running ( C - )  Mach line  charac- 
t e r i s t i c s  emanating from the   th ree  
poin ts   in te rsec t  downstream approxi- 
mately  as shown a t  some point (x  + Ax).  
For  a s tab le   ca lcu la t ion ,   the   loca l  
s tep   s ize  must not be greater   than  that  
given by the  approximate  characteristic 
mesh. For  the  purpose of obtaining  an 
approximate c r i t e r ion ,  it i s  assumed 
t h a t   a l l   t h e   s t r e a m l i n e s   a r e   p a r a l l e l   t o  
the  surface and the   l oca l  Mach number i s  
equal   to  %. The geometry then  gives 
for N = 2 

- 

Ax 5 8(%2 4 - 1 y 2  ( 2 3 )  

By t he  same reasoning it can  be shown 
t h a t   f o r  any value of N 

1/2 
ax 5 "(%' 2N - 1) (24) 

Figure 4.- Approximate hyperbolic stability 

Since  the  cr i ter ion  given by equa- 
t ion  (24)   is   approximate,  it i s  usual ly   necessary  to   use some f r ac t ion  of t h a t  
c r i te r ion   to   insure   success .  The cr i ter ion  cannot  be a p p l i e d   a t   t h e   i n i t i a l  
s tep  s ince 6 ( 0 )  = 0; therefore ,  a s ing le   l i nea r   s t ep  i s  taken a t  x = 0, and 
t h e   c r i t e r i o n  i s  appl ied   thereaf te r .  

cr i ter ion (N = 2). 

In   f i gu re  5 the   ca lcu la ted   sur face   p ressure   d i s t r ibu t ion   near   the  wedge t i p  
i s  shown for   case  I and N = 2. The solid  curve i s  an  unstable  calculation  using 



.582 
0 .01 

N = 2; fixed step size: Ax - 0.001 
I I - - - - N - 2; stability criterion applied 

X 
.02 

0. ou 

.03 

Figure 5.-  Effec t  of hyperbo l i c   s t ab i l i t y   c r i t e r ion .  Case I. 

a f irst-order  Euler  integration  procedure  with a f ixed   s tep   s ize  Ax of 0.001. 
For t h e   i n i t i a l   c o n d i t i o n s  of this case ,   t ha t   s t ep   s i ze   s a t i s f i e s   t he  N = 2 
s t a b i l i t y   c r i t e r i o n  when x > 0.013. Note tha t   the   so lu t ion   s tab i l ized  a t  t h a t  
point .  The dashed  curve i s  a l so  a f i r s t -order   Euler   in tegra t ion   wi th   an   in i t ia l  
s tep  s i z e  Ax of 0.001, but   the N = 2 s t a b i l i t y   c r i t e r i o n  was applied a t  
every  successive  step,  and  the results are s tab le .  

The s t a b i l i t y   c r i t e r i o n  was included  in  the  computational program used i n  
reference 13, and  case I11 w a s  successfully  integrated.   In  reference 13 cases I 
and I1 were integrated (for N = 1) without   the  s tabi l i ty   cr i ter ion  because  the 
automatic   s tep-s iz ing  bui l t   in to   the Runge-Kutta integrat ion scheme w a s  able t o  
sa t i s fy   t he  N = 1 cr i te r ion   wi th in   the  f irst  few steps.  

Pressure  Distribution and Shock-Wave Shape 

Calculat ions  for   the wedge (case I )  were performed f o r  N = 1, 2, and 3 .  
For t he  cone, the  a lgebraic   solut ions which g ive   t he   i n i t i a l   va lues  and  deriva- 
t i v e s   a r e   f a r  more tedious  in  higher  approximations  than  for  the wedge; there-  
fore ,  cone calculat ions  for  N = 3 were not  attempted. 
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The results for surface pressure distribution po(x) and shock-wave  shape 
p(x) are shown in figures 6 to 8, together with the characteristics  calculations 

.59 r 

0 Method of characteristics (ref. 14) ""- 
N = 2 )Method of integral  relations 
N = 1) 

Equilibrium-, 
\ 
\ - - - - -- "" . 

""" """"" 

(b) Shock-wave angle B as a function of x. 
I I I I I I I J 

I 1 2 3 4 x  5 6 7 8 

Figure 6.- Pressure distribution and shock-wave shape for a wedge. Case I. 



0 Method of characteristics  (ref. 15) 

N - 2  = ')Method of integral  relations 
"- 

of references 14 and 15. The shor t   hor izonta l   l ine  a t  the   r i gh t  of each  figure 
ind ica t e s   t he   l eve l  for vibrational  equilibrium (7' = 0)  flow. For  the  three 

.562g- 
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PO o o o o o o  '\ b " o o ~ " '  

- n  

.550 - '\ 
'L. .-. 

-\ -" -- 
.546 - " " 
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(a) Surface  pressure po as a function of x. 
" " 
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Figure 7.- Pressure  distribution  and  shock-wave  shape for a cone. Case 11. 
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cases most of the  approach to   equi l ibr ium 
i s  adequately  described by N = 2,  and 
the  accuracy  of N = 2 i s  considerably 
improved compared with  that  of N = 1. 
The nonconvergence  of the  surface  vibra- 
tional  energy,  explained  previously,  has 
a detrimental   effect  on the  asymptotic 
values  of a l l  the  var iables ,   but   the  
effect   decreases  as N increases.  
Figure 9 i l l u s t r a t e s   t he   su r f ace  
vibrational-energy  distribution  Eo(x) 
for  case I. The erroneous  overshoots  and 
undershoots  mentioned  earlier are c l ea r ly  
evident. 

Improvements for   Certain 

Surface  Variables 

In   reference 13 it was pointed out 
t h a t   t h e  approximate d i f f e r e n t i a l  equa- 
t ions  are   not   equivalent   to   the  correct  

Method of characteristics (ref. 15) 

1 :)Method of integral  relations 

Equilibrium-., 
_L 

Figure 8.- Surface pres su re   d i s t r ibu t ion  
f o r  a cone. Case 111. 

x-momentum and  streamline  rate  equations  at   the  surface - t h a t  i s ,  

and 

The discrepancy  occurs i n  a l l  approximations  largely  because  the  integral  rela- 
t i ons  must account  for v(&/&y)  and  v(aE/&)  throughout t he  shock layer .  
A s  w a s  shown in   re fe rence  13, equations  (25)  and  (26) can  be  used together  with 
equations (5)  and ( 6 )  t o  give improved d i s t r ibu t ions   b (x ) ,   Eo(x ) ,   Tg(x ) ,  
and co(x) ,   consis tent  with the  pressures  po(x)  obtained from the  approximate 

equations. The corrected  surface  vibrational-energy  distribution  %(x) i s  
shown i n  figure 9, and the  improvement i s  excellent.  A note  of  caution i s  nec- 
essary,  however: the  corrected  surface  var iables  w, Eg, etc . ,  are obtained 
in   addi t ion  to   the  corresponding  or iginal   var iables  UO, Eo, e t c .  It i s  
tempting to   r ep lace   t he  two approximate d i f fe ren t ia l   equa t ions   for  LQ and 
by the  exact  equations  (25)  and  (26). Such a "hybrid"  procedure w a s  used i n   t h e  
nonequilibrium  blunt-body  study  of  reference 12, and it w a s  t r i e d   i n   t h e  early 
stages of the  present work. In  the  present  application,  the  hybrid  procedure 
always  produced an unstable system. Unbounded osc i l l a t ions  of the  der ivat ives  

- - 

- 

- - 
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Figure 9.- Surface vibrational-energy distribution f o r  8 wedge. Case I. 

occurred near the tip,  regardless of the hyperbolic  stability  criterion  used. 
It  was found that if only the approximate differential equation  for  was 
discarded and replaced by equation ( 2 6 ) ,  the solutions  were  stable, but the 
overall results were poor compared with those obtained  by using the original 
approximate  equations. 
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x,$  Coordinates 

It i s  known that  the  choice  of dependent  and  independent  variables i s  impor- 
t a n t   i n  low approximations of t he  method of i n t eg ra l   r e l a t ions .  If, f o r  example, 
spheri .ca1  polar  coordinates  are  used  for  the cone solution  (frozen or equilibrium 
flow),  the results are l e s s   accu ra t e   fo r  N = 1 than  the  corresponding  results 
for  the  body-oriented  x,y  coordinates  (see  f ig.  2 of ref. 1 3 ) .  

Since  streamlines  have a major r o l e   i n  nonequilibrium  flows,  the  x,y 
coordinates were transformed t o  x,$  coordinates, where $ i s  the  stream  func- 
t ion .  The in tegra l   re la t ions  were  redeveloped f o r  the  wedge ( j  = 0)  and N = 2. 
No particular  advantage w a s  evident  since  the  str ip  boundaries are not  stream- 
l ines,   and  there w a s  no difference  in   the  numerical   resul ts   for   case I obtained 
by use of either  the  x,$  or  the  x,y  coordinates.  

Shock-Layer P ro f i l e s  1 
Even in  higher  approximations,  the 

d e t a i l s  of the  nonequilibrium  flow 
between the shock wave and the  body sur- 
face are not  described  accurately. A t  
any downstream s t a t ion  x there   a re  
only N + 1 points  along a normal t o  
the  surface from which flow-variable 
p ro f i l e s  can be obtained.  Likewise,  the 
poor  asymptotic  behavior,  discussed  pre- 
viously,   causes  considerable  error  in 
the  most in te res t ing   var iab le ,  T .  I n  
references 12 and 13 streamlines were 
used t o  ob ta in   be t te r   de ta i l s   for  N =l. 

Figure 10 i l l u s t r a t e s   t h e   p r o f i l e s  
of  pressure  and  temperature  obtained  in 
reference 15 for   case I1 a t  a s t a t ion  
x = 9.0. The three  points  given by the  
i n t e g r a l  method f o r  N = 2 a r e   a l s o  
shown i n   t h e   f i g u r e  a t  a s t a t ion  x = 8.0 
( the  present   calculat ions were not  car- 
r i e d   f a r t h e r ) .  Although the  pressures 
agree  reasonably  well,  the  temperatures 
do not.  The corrected  surface  tempera- 
t u r e   ( r e f .  13)  TO i s  shown t o  agree 
wel l   wi th   the  character is t ics   resul t .  

It appears tha t ,  i f  accurate 
d e t a i l s  of the  temperature  and  density 
prof i les   are   required,   addi t ional   cal-  
culations must be carried  out  along 
streamlines by using a procedure l i ke  
that   descr ibed  in   reference 13.  

- --- " 
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Figure 10.- Pressure  and  temperature  pro- 
files fo r  a cone. Case 11. 



C ONC LUDING REMARKS 

The method of in tegra l   re la t ions   has  been used to   ca lcu la te   supersonic ,  
vibrat ional ly   re laxing  f low  past  wedges and  cones. Comparison of  these  calcula- 
t ions   wi th   charac te r i s t ics   ca lcu la t ions  showed t h a t   t h e  second, or two-strip,  
approximation was accura te   for  most  of the  approach  to  equilibrium. The  asymp- 
to t i c   va lue  of the  surface  vibrational  energy  did  not converge t o  the   cor rec t  
value in  higher  approximations. The other  f low  variables were ra ther   insens i t ive  
t o  this  discrepancy, however,  and the  erroneous  surface  energy  distribution was 
corrected.  

For the  present problem, i n  which the   en t i r e  shock layer i s  supersonic, 
t he   o r ig ina l   pa r t i a l   d i f f e ren t i a l   equa t ions   a r e  of  hyperbolic  type. The approx- 
imate systems  of   ordinary  different ia l   equat ions  correct ly   posed  an  ini t ia l -  
value  problem.  Control of  the   in tegra t ion   s tep   s ize  was necessary  to  achieve 
numerical ly   s table   solut ions;   the   s tabi l i ty   cr i ter ion i s  re la ted   to   the   hyper -  
bo l ic   charac te r i s t ic   curves .  

It was found tha t   the   exac t  forms of t he  momentum and rate  equations  along 
the  body surface  could  not be used i n   l i e u  of their   counterparts  in  the  approx- 
imate  systems. Such a hybrid  procedure  always  produced  unstable  numerical 
resu l t s   near   the  wedge or cone t i p .  

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley S ta t ion ,  Hampton, Va., June 4, 1964. 
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APPENDIX A 

FROZEN SHOCK-WAVE RELATIONS 

The appropriate  frozen shock-wave relat ions  are   given  for  7 = 7/5 
(ref.  1 8 ) .  Let 

b(p,&) = b 2 s i n 2 p  ( A I )  

then 

U(X,S)  = u6 = (1 - a)cos  e + a cot p s in  e (A3 1 

v(x ,g )  = v6 = -(1 - a)sin e + a cot p cos e (A4 1 

The p-derivatives of equations (A3) t o  ( A 6 )  a r e  also requi red   expl ic i t ly  and 
they  are,   respectively,  

dug - 5 
" - - cos p s in  h - a s i n  8 

3 sin+ 

"- dvg - 5 cos p cos h - a cos e 
dp 3 sin2p 

"- d p ~  - 5 s in  p cos p 
dp 3 
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APPENDIX B 

COMPUTATIONAL EQUATIONS FOR N = 2 

Before  the  f inal   computational forms of t h e  approximate  systems a re  
obtained,  the  derivatives  of  the  functions Qi ,k  must  be fur ther  expanded i n  

teRIlS O f  Uk,  Vk, pk, pk, Ek, and  rkJ. The  fUIlCtiOnS a t   t h e  shock Wave 
Qi,6 a re   expl ic i t   func t ions  of p (and ' 6  when j = 1) so that dQi,6/dx 

can be expressed i n  terms of the   s ing le   der iva t ive  dp/dx (and dr6/dx when 
j = 1). For example, 

o r  

I n  any  approximation  the  equation which contains dQ3,oldx and dQ3,6/dx will 

yield  the  required  expression  for  dp/dx by using  equations ( B l b )  and (11) and 
by not ing  that  Q3,o = pouovo = 0 f o r  a l l  values  of x. Treating dp/dx (and 
thus dQi,&/dx) as a known algebraic   quant i ty   effects   considerable   s implif ica-  

t i on ,  as follows: a t  each s t r i p  boundary the  der ivat ives  of the  corresponding 
var iables  Uk,  Vk, Pk,  and Ek can be obtained by solution of a 4 by 4 l i n e a r  
algebraic  system.  (Eqs. (3)  and (6)  a re   used   to   e l imina te   der iva t ives  of pk. ) 

This  feature i s  emphasized to   po in t   ou t   t ha t  one does  not have t o   d e a l   d i r e c t l y  
with a 4N by 4N system  but  rather N (4 by 4) systems. The algebra  required 
f o r   t h e  l a t te r  i s  simple, s o  that one need  not   resor t   to  time-consuming inversion 
of a 4N by 4 N  matrix i n  the  computer a t  each  integration  step.  

The procedures are now demonstrated  for N = 2. The der ivat ives  of rkj 
a re  expanded  from the  functions  Qi,k  (k = 0,1,6) as. in  equation  (Bla) , and 

then  equations (18) are   divided by roj. Equations (18a) can  be  writ ten  ( in  the 
order i = 3,1,2,4) 

6B1H1 = K1 
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6 $(Po%) = K2 

and  equations (1811) can be w r i t t e n   ( i n   t h e  order i = 1,2,3,4) 
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B 1  = 1 + j# cot 8 7 
B2 = B 1  + 1 

B3 = 2B1 + 1 

The var iable  # = 6 / x  i s  introduced t o  maintain  consistent  numerical  accuracy 
i n   t h e   r a t i o  6/x near   the  cone t i p .  

where 

Also, 

Equations ( E O )  t o  (B24) are subst i tuted  into  equat ions (B3)  t o  (Bg) t o   a r r i v e  
a t  the   f ina l   equa t ions  which (together  with eq. ( X ) )  complete t h e  set f o r  
N = 2: 
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APPENDIX C 

EXACT INITIAL DERIVATIVES  FOR A WEDGE 

Sedney ( r e f .  22) used  natural   coordinates   to   der ive  exact   expressions  for  
t h e  shock  curvature  and  the  gradients of surface  flow  variables a t  the  wedge t i p  
caused  by  vibrational  relaxation. A somewhat different  approach, which i s  more 
appropriate   to   the  present  problem, yields  an  equivalent  solution  for dp(O)/dx 
and  the  ini t ia l   f low-variable   gradients   a long any s t r i p  boundary. 

The coordinates q = y/6  and ( = x are  introduced t o  map t h e   s t r i p s  
( f i g .  2 )  into  rectangular  regions,  with  the  shock a t  7 = 1 and the  surface a t  
7 = 0. In  the  (q-plane  the wedge t i p  i s  t h e   l i n e  5 = 0, 0 5 '1 5 1. Deriva- 
t i v e s  of p are  eliminated from equation (1) by using  equations ( 4 ) ,  ( 5 ) ,  and 
( 6 ) ;  the  transformed  continuity, momentum, and  vibrational-rate  equations  are 
as follows: 

3E 6u - + ( v  - UT t an  A)- = 
a5 a, 

aE 

Equations ( C l )  t o  ( C 4 )  a re   d i f fe ren t ia ted   aga in   wi th   respec t   to  5 ,  t he  
l i m i t  as 5 and 6 + O  i s  obtained,  and  the  following  frozen-flow wedge con- 
d i t i ons  are applied: 

V ( 0 , d  = 0 

Then a t  t h e  wedge t i p ,   t h a t  is, a long   t he   l i ne  5 = 0, 



- + pu t an  A ap 

a17 

where 

The boundary  conditions are as fol lows:  

At 17 = 1, 

u(1) = - - 
dug dE dpl 

and a t  7 = 0, 

28 

n(1) = 0 

v(0 )  = 0 (ClOb) 



The solut ion of equations ( ~ 6 )  t o  (Cg) with the boundary  conditions ( C 1 0 )  
i s  readily  obtained.  In  terms of the  notat ion of the  main t ex t ,   t he  wedge 
i n i t i a l   d e r i v a t i v e s  a t  x = 0 a r e  found t o  be 
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